jueves, 7 de junio de 2012

Manual de Matemáticas Para Ingenieros y Estudiantes

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiQOr-jhYtmzSgSugIf5MR1GrNa8YWvQT9Tyom8KrWUH2SrhFhuO_29-p65Ev7e78zypKRXb9ydjU1zpoDut9udrQcc5YjcXBeS-A2NzvPR0vHw7qupGazGxwhduJ1t1ZkIldulGf8PFr8/s128/Manual%20De%20Matematicas%20Para%20Ingenieros.Jpg

Manual de Matemáticas Para Ingenieros y Estudiantes
Bronshtein -Semendiaev. p
Editorial MIR
Reseña

Excelente manual de matematicas para estudiantes de cualquier año de bachillerato, cualquier carrera universitaria y para profesores. Contiene todo el programa de matematicas basicas, diversificada y Unoversitaria que necesitas para ponerte al dia con tus estudios.
Este Manual tiene 692 paginas, tablas, graficas, ejecrcicios resueltos, su respectivo Indice, excelentes ilustraciones, para estudiantes de secundaria, universitarios y profesionales.
INDICE
  • Primera Parte. Tablas Y Gráficas. Tablas. Gráficas
  • Segunda Parte. Matemática Elemental. Cálculos Aproximados. Álgebra. Geometría. Trigonometría. 
  • Tercera Parte. Geometría Analítica Y Geometría Diferencial. Geometría Analítica. Geometría Diferencial 
  • Cuarta Parte. Fundamentos Del Análisis Matemático. Introducción Al Análisis. Cálculo Diferencial. Cálculo Integral. Ecuaciones Diferenciales. 
  • Quinta Parte. Capítulos Complementarios Del Análisis. Los Números Complejos Y Las Funciones De Variable Compleja. Cálculo Vectorial. Series DF Fourier (Análisis Armónico). 
  • Sexta Parte. Elaboración De Las Observaciones. Fundamentos De La Teoría De Probabilidades Y De La Teoría De Errores. Fórmulas Empíricas E Interpolación.                   


Consulta el Libro (21 MB) por:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj3pVy7VKqDKhwCzIr46Pv2itVJJbESHi1yF58KctQtW7EpKVPSdu2YcsH-Bv7rP1zeRUdftqDXMdM3LwZR1g8Ibt6A_Y8jD6uM2SZEEDOmSm8jwjT5OvhQ_TMJDucRF-gqfcGnrs7Q1TY/s200/logo+Tubobit.net.png
http://3.bp.blogspot.com/-OEWn1AqMuVE/TzU_WLZJTTI/AAAAAAAAAwU/CLW8I82-w8M/s200/Logo+MediaFire.jpg


INDICE GENERAL
  • PRIMERA PARTE. TABLAS Y GRÁFICAS.
  • TABLAS. Tablas de las funciones principales (elementales). Algunas constantes de uso frecuente. Cuadrados, cubos y raíces. Potencias de los números enteros desde (n = hasta n = 100). Valores recíprocos… 
  • GRÁFICAS. Funciones elementales. Polinomios. Funciones racionales fraccionarias. Funciones irracionales. Funciones exponenciales y logarítmicas. Funciones trigonométricas. Funciones trigonométricas inversas...
  • SEGUNDA PARTE. MATEMÁTICA ELEMENTAL. 
  • CÁLCULOS APROXIMADOS. Reglas para los cálculos aproximados. Fórmulas de aproximación. Regla de cálculo. 
  • ÁLGEBRA. Transformaciones de identidades. Conceptos fundamentales. Expresiones racionales enteras. Expresiones racionales fraccionarias. Expresiones irracionales; transformación de potencias y raíces... 
  • GEOMETRÍA A. Planimetría. Figuras planas. Estereometría. Rectas y planos en el espacio. Ángulos del espacio. Poliedros. Cuerpos redondos. 
  • TRIGONOMETRIA. Trigonometría plana. Funciones trigonométricas. Fórmulas fundamentales de la trigonometría. Cantidades sinusoidales. Resolución de triángulos. Funciones circulares (trigonométricas) inversas...
  • TERCERA PARTE. GEOMETRÍA ANALITICA Y GEOMETRÍA DIFERENCIAL. 
  • GEOMETRÍA ANALÍTICA. Geometría del plano. Conceptos fundamentales y fórmulas. La línea recta. La circunferencia. La elipse. La hipérbola. La parábola. Curvas de segundo orden (secciones cónicas... 
  • GEOMETRÍA DIFERENCIAL A. Curvas planas. Métodos de expresión de una curva. Elementos locales de una curva. Puntos de tipo especial. Asíntotas. Estudio general de una curva por su ecuación...
  • CUARTA PARTE. FUNDAMENTOS DEL ANÁLISIS MATEMÁTICO. 
  • INTRODUCCIÓN AL ANÁLISIS. Los números reales. Las sucesiones y sus límites. Funciones de una variable. Límite de una función. Infinitésimos. Continuidad y discontinuidades de las funciones. Funciones de varias variables... 
  • CÁLCULO DIFERENCIAL. Conceptos fundamentales. Reglas de derivación. Cambio de variables en las expresiones diferenciales. Teoremas fundamentales del cálculo diferencial. Determinación de máximos y mínimos... 
  • CÁLCULO INTEGRAL. Integrales indefinidas. Conceptos y teoremas fundamentales. Reglas generales de integración. Integración de las funciones racionales. Integración de funciones irracionales... 
  • ECUACIONES DIFERENCIALES. Conceptos generales. Ecuaciones diferenciales ordinarias. Ecuaciones de primer orden. Ecuaciones de orden superior y sistemas de ecuaciones. Resolución de ecuaciones diferenciales lineales de coeficientes constantes...
  • QUINTA PARTE. CAPÍTULOS COMPLEMENTARIOS DEL ANÁLISIS. 
  • LOS NÚMEROS COMPLEJOS Y LAS FUNCIONES DE VARIABLE COMPLEJA. Conceptos fundamentales. Operaciones algebraicas. Funciones trascendentes elementales. Ecuaciones de las curvas en forma compleja... 
  • CÁLCULO VECTORIAL. Algebra vectorial y función vector de un escalar. Conceptos fundamentales. Multiplicación de vectores. Coordenadas covariantes y contra variantes de un vector. Aplicaciones geométricas del álgebra vectorial... 
  • SERIES DF FOURIER (ANÁLISIS ARMÓNICO). Nociones generales. Tabla de algunos desarrollos en serie de Fourier. Análisis armónico aproximado.
  • SEXTA PARTE. ELABORACIÓN DE LAS OBSERVACIONES. 
  • FUNDAMENTOS DE LA TEORÍA DE PROBABILIDADES Y DE LA TEORÍA DE ERRORES. Teoría de probabilidades. Teoría de errores. 
  • FÓRMULAS EMPÍRICAS E INTERPOLACIÓN. Representación Aproximada de una dependencia funcional. Interpolación parabólica. Elección de fórmulas empíricas. 
 

No hay comentarios:

Publicar un comentario

Me gustaría Saber: Quién eres y de Donde Eres. Deja de Ser un Anónimo. Que tengas un Buen Día.